Differential Evolution Control Parameters Study for Self-Adaptive Triangular Brushstrokes
نویسندگان
چکیده
This paper proposes a lossy image representation where a reference image is approximated by an evolved image, constituted of variable number of triangular brushstrokes. The parameters of each triangle brush are evolved using differential evolution, which self-adapts the triangles to the reference image, and also self-adapts some of the control parameters of the optimization algorithm, including the number of triangles. Experimental results show the viability of the proposed encoding and optimization results on a few sample reference images. The results of the self-adapting control parameters for crossover and mutation in differential evolution are also compared to results with keeping these parameters constant, like in a basic differential evolution algorithm. Statistical tests are furthermore included to confirm the improved performance with the self-adaptation of the control parameters over the fixed control parameters.
منابع مشابه
Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملA comparative study of common and self-adaptive differential evolution strategies on numerical benchmark problems
Differential Evolution (DE) is a population-based stochastic global optimization technique that requires the adjustment of a very few parameters in order to produce results. However, the control parameters involved in DE are highly dependent on the optimization problem; in practice, their fine-tuning is not always an easy task. The self-adaptive differential evolution (SADE) variants are those ...
متن کاملControl Parameters in Self-adaptive Differential Evolution
Abstract In this paper we present experimental results to show deep view on how selfadaptive mechanism works in differential evolution algorithm. The results of the self-adaptive differential evolution algorithm were evaluated on the set of 24 benchmark functions provided for the CEC2006 special session on constrained real parameter optimization. In this paper we especially focus on how the con...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملSelf-adaptive control parameters' randomization frequency and propagations in differential evolution
This paper presents insight into an adaptation and self-adaptation mechanism within differential evolution, covering not only how but moreover – when this mechanism generates new values for control parameters, focusing on the iteration-temporal randomness of the self-adaptive control parameters. In particular, this randomness is controlled by a randomness level parameter, which influences the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Informatica (Slovenia)
دوره 39 شماره
صفحات -
تاریخ انتشار 2015